Product and Process Impacts of Green **Machining Strategies**

Funding Source: Industrial Affiliates of LMAS

Introduction

- Green machining strategies decrease environmental impacts, but may also:
 - Increase stresses, forces, and heat generation on tool, part, machine
 - Impact several aspects of manufacturing system such as:
 - Availability
- Achieved part quality
- Service life
- Cost
- Current analyses of green machining strategies focus on:
 - Environmental impacts, primarily energy, using LCA approaches
 - Trade-offs between environmental and economic impacts (e.g., combined LCA + LCC, eco-efficiency, and target costing approaches)
 - Trade-offs between environmental and technical impacts, primarily for processes (e.g., Life Cycle Performance evaluation and manufacturing process and system planning tools)
 - Trade-offs between environmental, economic, and technical impacts using multi-objective optimization, specifically analytic hierarchical processes

Objectives

- Build upon previous work in the literature by extending manufacturing analyses to evaluate:
 - Environmental impact (electrical energy usage)
 - System performance (availability, service life, tool wear)
 - Achieved part quality (surface roughness, local strain hardening)
- Apply this approach to a baseline scenario and a set of processing alternatives to turn Ti-6Al-4V test parts ($D_i = 25 \text{ mm}$; L_{cut} = 80 mm) using uncoated carbide inserts and flood cooling:

Baseline	Rough Cut (x2)	Finish Cut (x1)	
Cutting speed, v_c (m/min)	65	65	
Feed rate, f (mm/rev)	0.30	0.10	
Depth of cut, d (mm)	2.0	0.5	

Alternative 1	Baseline but w/ no cutting fluid

Alternatives 2	Roughing	Finishing		
Cutting speed, v_c (m/min)	100, 15	100, 150, 200		
Feed rate, f (mm/rev)	0.45, 0.60, 0.75	0.20, 0.40, 0.60		
	(1x) 3.0	(3x) 0.5		
Depth of cut, d	(1x) 4.0	(1x) 0.5		
(mm)	(2x) 2.1	(1x) 0.3		
	(2x) 2.15	(1x) 0.2		

Methodology

Electrical energy analysis:

- Measured Real power at 10 Hz
- Adjusted for internal cooling
- Included tool change
- Used Karlsruhe energy mix:
 - 418 g-CO₂/kWh
 - €0.2332/kWh

Service cost analysis:

- Focused on spindle
- Analyzed statistical failure behavior (Weibull approach)
 - Stress cycles along turning axis measured with Kister 9255B three component dynomometer
- Historical breakdown behavior from similar machine tool
- Averaged results of Monte Carlo simulation assuming full utilization of machine tool

	Simulation Variables						
	Early breakdowns	40% of total 0.1% €4000/hour		Service cost	€300		
	Probability of random breakdowns			Service duration	4 hours		
	Production loss			Service technician cost	€50/hour		
	Spindle cost	€10000			30% of time		
	Ava time b/t service	time b/t service 3000 hour		Service scheduled	remaining		

<u>Tool wear analysis:</u>

Measured flank wear land width (VB) of major cutting edge after both final rough and finish cuts using microscope

Surface roughness measurement:

- Measured after final rough and finish cut
- Averaged values from tip and shoulder of part
- Utilized Concept Contur PST-MSE stylus type instrument
- Scan length = 10 mm (in feed direction)
- Scan speed = 0.5 mm/s
- Stylus tip radius = 25 μm

Local strain hardening measurement:

- Measured full width at half maximum (FWHM) of x-ray interference patterns after final finish cut
 - \blacksquare {2 1 3}-diffraction lines of α -phase were studied using Ni-filtered Cu Ka radiation
 - Average of 5 tilt angles reported

Dry: R_a~1.22 μm

f (rough)

f (finish)

d (rough)

🖶d (finish)

f (rough)

Dry: FWHM~1.8136°

■ FWHM increases as dislocation density increases

Results (Baseline Marked by "X")

Od (rough)

Electrical energy:

- Cost and emissions scale with energy
- Baseline = €0.08 and 150 g-CO₂
- Dry machining needs less energy (44.3 kJ/cm³)
- Benefits decrease as MRR increases

Service costs:

- ↑ *d* has highest service costs
 - Most aggressive strategy on spindle
- $ightharpoonup \uparrow v_c$ has lowest service costs
 - Lower mechanical loads, but potentially higher thermal loads
- € 0.25 .20 ± <u>.8</u> 0.05

Avg. Material Removal Rate over Rough and Finish Cuts (cm³/min)

E = 20.44 + 610/MRR

- Largest costs due to production loss Unexpected breakdowns add
- variability

Tool wear: Dry: Rough ~130 μm; Finish ~24 μm Flank Wear and Width (µm) 000 009 Material Removal Rate (cm³/min) <u>ਛ</u> 100 50

- Material Removal Rate (cm³/min) Flank wear most influenced by v_c , f
 - ↑ thermal gradients = ↑ material diffusion and plastic deformation
- Tool life difficult to determine
- Generally surface quality based decision
- Tool use = high impact: ~1 MJ/cutting edge

Feed rate had highest influence ■ ↑ elastic-plastic deformation in

influenced by finish cut

Local strain hardening:

Surface roughness:

Primarily

Final

driven by

feed marks

roughness

strongly

Avg. MRR over Rough and Finish Cuts (cm³/min)

FWHM strongly influenced by finish cut

0.00

Conclusions

Local Strain Surface Electrical **Tool Wear Service Costs** Energy Roughness Hardening $\uparrow v_c$ $\uparrow f$ Variable $\uparrow d$ Dry

- Process time reduction has far reaching impacts
- Part functionality plays critical role in total costs
 - Dictates tool life and subsequent costs
 - Allows for trade-offs between manufacturing and use to decrease overall life cycle impacts
- None of the strategies may be viable for titanium
 - Great financial risks associated with unexpected breakdowns
 - Tooling of great concern
 - Maximum electrical energy saved is ~500 kJ but each cutting edge requires ~1 MJ of embodied energy
 - Potential impact on surface integrity can reduce operational efficiency of part

Future Work

- Limitations of current analysis:
 - Simple test piece made of difficult-to-cut material
 - Non-industrial setting
 - Only focused on electrical energy
 - Only investigated flank wear
 - Variability in service costs caused by unexpected breakdowns
- Future work:
 - Determine appropriate case study part to investigate part functionality effects
 - Determine optimal process parameters that maximize resource efficiency over life cycle
 - Incorporate other tool wear metrics
 - Rake face measurements?
 - Incorporate other surface quality metrics
 - Geometrical accuracy Residual stress
 - Develop run charts to aid process planning

Acknowledgements

- Benjamin Behmann, Harald Meier, Jens Gibmeier, Andreas Weckerle
- Karlsruhe House of Young Scientists (KYHS) at the Karlsruhe Institute of Technology (KIT)
- German Research Association (DFG)
- Industrial Sponsors of the Laboratory for Manufacturing and Sustainability