

Decision Making Framework for Greener Sheet Stamping Processes

■ Non conventional stamping processes enable the use of 40%-50% thinner blanks due to a more uniform elongation of the material. LWMs with impractical formabilities can be stamped at lower temperature than traditional methods

■ Life Cycle Assessment (LCA) of the stamping processes: environmental impact evaluation. Eco-impact mapping of the process and leverage effect evaluation

proper location of the material properties according to the product requirements

Eco-efficiency Analysis: trade off evaluation and scenario analysis combining green, economic and technical performances (uneven emphasis may be attributed by additional multi-criteria methods)

 -1.0 mm

Dodge-Caliber-B-pillar RTB Ultra High-Strength

 -1.9 mm

1.85-1.05 mm

 $-1.65 - 1.85$ mm

1.6 mm 1.75-1.65 mm

1.8 mm 1.0 mm

Mild Steel

Problem Statement **Decision Making Framework – I**

- LW Manufacturing (LWM) is economically challenging (higher cost of material supply and tooling)
- LWM is technologically challenging (LWMs exhibit lower formability: hot stamping may be needed)
- LWMs primary production is high energy consuming

Advantages

- Higher final stiffness with thinner blanks
- No reinforcement where higher strength required
- \blacksquare <13% weight reduction
- Efficient material use

VW JETTA

(different materials on the side)

Funding source: SMP and industrial affiliates of LMAS

■ Green sheet stamping processes can trigger a significant leverage effect throughout the vehicle life cycle ■ Improving the manufacturing phase results in a more efficient material use and reduction of $CO₂$ in the use phase Motivations and Opportunities ■ A 6% to 8% fuel saving can be realized for every 10% reduction in weight by replacing steel with Light Weight Materials (LWMs) Weight reduction by LWMs *Greener stamping processes* (14.3%) *Lower emission in the use phase* $(LL1 85.3%)$ *-40% -60%* $\overline{\text{Castings}}$ *Sheet'(Al)'* $Extrusions$ *(*< 40% replacing steel with Al) Stamping 90% Castings 4% \bigcirc Extrusions 6% ** White M, "Aluminium & the Automotive Industry", 21st Int Al Conf, 2006 LWV diesel (Audi A2) Hybrid car –Honda Insight Hybrid car – Toyota Prius Mid - size diesel car Mid - size petrol car Heavy diesel car Heavy petrol car Sport Utility Vehicle (SUV) 0 50 100 150 200 CO2 equivalent emission [g/Km]* Al frame (<43%) **** White M, "Aluminium & the Automotive Industry°, 21st Int Al Conf, 2006* -65% -50% -35% -20% -5% AHSS \geq \mathbb{S} Weight reduction by Weight reduction by
LWMs Baseline for conventional steels *-25%* * www.autosteel.org *** Geyer R, "Life cycle GHG assessments in BIW applications methodology", Worldautosteel Report, 2007* 85.3% 0.1% 4.3% 10.3% *Typical Life Cycle emission of a passenger car Materials Manufacturing Use Disposal ** Bertram M et al., Int J Life Cycle Assess ,"Analysis of greenhouse gas emissions related to aluminum transport applications",2009* -1000 0 1000 2000 3000 4000 5000 Fab&Man Use Recycling Material Total Lost Life Cycle $CO₂$ saving kg (replacing steel with LWMs after a lifetime driving distance of 200,000 km body-in-white example) Weight reduction < 221 kg

Blanks of varying thickness, material alloys and grades enable a

Tailored Blanks (TB) Non conventional stamping processes

Material supply

Decision Making Framework - II Conclusions and expected results

- Processes causing the lowest possible eco impact, while still offering economic and technical viability, are needed
- A standalone LCA application does not allow a thorough evaluation of the process performances
- The above Decision Making Framework allows to:
	- Harmonize ecological, economical and technical performances
	- Evaluate the impact of design choices by "*what if…?"* analysis
	- Guide design choices among alternative scenarios
	- Identify eco-improvement drivers
	- Address the material selection

** www.autosteel.org

$$
LE_{use phase} = \Delta m_{part}^* V^* e
$$

 $LE_{use phase}$ = leverage effect Δm _{part} = $m_{part,i}$ – $m_{part, refer}$ $V =$ weighted induced fuel consumption $e = CO₂$ -eq conversion factor

Is LWM worth developing? Trade off analysis is required

^{**} www.worldautosteel.com * Fine C, Roth R, LWMs for Transport: Developing a Vehicle Technology Roadmap for the Use of Lightweight Materials, MIT Roundtable, 2010